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Modeling gene expression cascades
during cell state transitions

Daniel Rosebrock,1,2,3,* Martin Vingron,1 and Peter F. Arndt1,*
SUMMARY

During cellular processes such as differentiation or response to external stimuli, cells exhibit dynamic
changes in their gene expression profiles. Single-cell RNA sequencing (scRNA-seq) can be used to inves-
tigate these dynamic changes. To this end, cells are typically ordered along a pseudotemporal trajectory
which recapitulates the progression of cells as they transition fromone cell state to another.We infer tran-
scriptional dynamics by modeling the gene expression profiles in pseudotemporally ordered cells using a
Bayesian inference approach. This enables ordering genes along transcriptional cascades, estimating dif-
ferences in the timing of gene expression dynamics, and deducing regulatory gene interactions. Here, we
apply this approach to scRNA-seq datasets derived from mouse embryonic forebrain and pancreas sam-
ples. This analysis demonstrates the utility of the method to derive the ordering of gene dynamics and
regulatory relationships critical for proper cellular differentiation and maturation across a variety of
developmental contexts.

INTRODUCTION

Changes in gene expression underlie the intrinsic molecular processes governing differentiation, enabling cells to change their morphology

and function. These changes can occur in part due to extrinsic cues from signaling molecules1 or temperature and oxygen levels in the or-

ganism’s environment,2,3 as well as intrinsic mechanisms such as the asymmetric distribution of cellular components during cell division.4

These processes result in modifying the expression levels of genes that are critical for cell fate specification, most importantly transcription

factors, which can initiate or block the expression of downstream target genes, including other transcription factors. The sequential activation

and repression of transcription factors and their target genes can give rise to a cascade of gene expression, whereby an initiating event can

regulate a hierarchy of downstream genes essential for the cell to acquire subsequent cell states. For example, the Pax6/ Eomes/ Tbr1

transcription factor cascade directs the progression of radial glia to intermediate progenitor to postmitotic projection neuron in the devel-

oping cortex,5,6 and the transcription factor cascade initiated byNeurog3 controls the differentiation of endocrine progenitor cells to mature

pancreatic cells.7,8 It is therefore critical to accurately deducegene expression cascades in order to determinewhich genes are responsible for

specific cell fate changes during differentiation and maturation.

Single-cell RNA sequencing (scRNA-seq) enables sampling the gene expression profile of thousands of cells in an individual sample. How-

ever, it is necessary to destroy the cell in order tomeasure its transcriptome, therebymaking it impossible to observe how the cell and its gene

expression profile would have altered in the future. Nonetheless, it is possible to order cells along a trajectory which accurately recapitulates

the progression of cells as they transition fromone cell state to another. This ordering of cells along a trajectory is known as pseudotime, which

is essentially a mapping of single-cell transcriptomes to a developmental timeline. Pseudotime methods work under the assumption that cell

state changes occur through transitional states, and that these can be measured as gradual shifts in gene expression in individual cells.9–14

Based on the ordering of cells along a pseudotemporal trajectory, it is possible to measure the dynamics of gene expression as cells un-

dergo cell state transitions. Current algorithms typically model gene expression dynamics along pseudotemporal trajectories by fitting their

expression profiles using generalized linear models,12,15,16 with the ultimate goal of determining if gene expression significantly varies as a

function of pseudotime. Other methods attempt to deduce pseudotime-dependent gene interactions by calculating a similarity measure be-

tween the expression levels of the ‘‘present’’ of one gene, and the ‘‘past’’ of another gene using correlation17 or mutual information.18 How-

ever, these methods do not calculate an explicit ordering of expression dynamics along a pseudotime trajectory, and require user-defined

cutoffs for determining meaningful interactions.

Here, we present a method to better understand the cascade of gene expression dynamics underlying cell state transitions. We are inter-

ested in answering questions such as, if two genes are up-regulated during a cell state transition, is one gene up-regulated before the other,

or are they up-regulated simultaneously? Furthermore, is it possible to estimate a certainty in the timing of their expression dynamics? In this

paper, we address these questions by explicitly modeling gene expression over a pseudotime trajectory using a set of functions that reflect
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biological state switches, and that model the dynamic behaviors of gene expression within cells as they differentiate. We formulate the prob-

lem using a Bayesian inference framework and use an ensemble sampler Monte Carlo Markov chain (MCMC) approach19 to sample from the

posterior distributions over the parameter spaces of the various functions, and determine which model best fits the data. This provides an

explicit ordering of genes along a pseudotemporal trajectory based on inflection point estimates, enabling the description of expression dy-

namics in terms of transcriptional cascades, estimating differences in switch times of gene expression, and annotation of potentially causal

gene interactions in gene regulatory networks.

Wewill introduce ourmodeling framework in general terms in the first section of the results. Amore detailed description is provided in the

STAR Methods section. We then apply our method in multiple developmental settings, in which we dissect the transcription factor cascades

underlying cortical neurogenesis and pancreatic beta cell development across multiple scRNA-seq datasets. We also show how our method

can be used to infer potential upstream regulators of a given gene of interest. Finally, we utilize our method to deduce the gene expression

cascade of the Notch signaling pathway in the developing cortex in order to highlight the applicability of our method to gene sets beyond

transcription factors. These examples demonstrate the ability of our method to accurately model the dynamics of gene expression during cell

state transitions, and highlight the biological insights our method enables.
RESULTS

Modeling gene expression dynamics along pseudotime trajectories

The goal of the method presented here is to decide if a state switch (up- to down-regulation or down- to up-regulation) occurs along a pseu-

dotemporal trajectory, and at what pseudotime these switches occur, in order to determine the timing and ordering of activation and repres-

sion during cell state transitions. In order to do this, we first define a set of functions which can model a wide variety of expression dynamics,

and for which state changes are well defined and interpretable, namely at the inflection points of each function. The functions are then fit to

the normalized expression levels for each gene across cells ordered by their relative pseudotempoal ordering. The functions used for fitting

are defined as follows,

funifðt;bÞ = b;

fgaussðt; a;b; t0;sÞ = ae�ðt� t0Þ2
s2 +b;

fsigðt; k; L; t0;bminÞ = L

1+e� kðt� t0Þ +bmin;

fdsigðt; k1; k2; t1; t2;bmin;bmid ;bmaxÞ = bmin +
bmid � bmin

1+e� k1ðt� t1Þ +
bmax � bmid

1+e� k2ðt� t2Þ :

(Equation 1)

Here, funif is a uniform functionwithb> 0, whichmodels the absence of dynamics in gene expression along a pseudotime trajectory. fgauss is

a Gaussian functionwith parameter constraints a> 0; b> 0, s> 0; and 1% t0 %N, withN = number of cells in the pseudotime trajectory. fsig is

a sigmoidal function with parameter constraints L> 0; b> 0; and 1% t0 %N. Finally, fdsig is a double sigmoidal function with the formulation

described in the study by Baione et al.20 and parameter constraints bmin > 0; bmid > 0; bmax > 0; k1 > 0; k2 > 0; and 1% t1 < t2 %N. The moti-

vation for using these functions is based on observations frombiological scenarios during development.21 For instance, during differentiation,

genes can display a shift from one steady state to another, which can be modeled using a sigmoidal function. They can also exhibit impulse

patterns of up-regulation followed by a return to basal levels, which can be modeled using a Gaussian function. Finally, double sigmoidal

functions can model impulse patterns with asymmetric increase and decrease rates and different initial and terminal basal levels, as well

as stepwise up and stepwise down expression patterns (Figure S1). We formulate the problem of fitting gene expression profiles in cells or-

dered along a pseudotime trajectory as a Bayesian inference problem, and estimate parameters for each function using an ensemble sampler

MCMC approach19 (see STAR Methods). Based on the best-fitting function to the gene expression profiles, genes are ordered according to

the relative occurrence of inflection point estimates to provide temporal estimates of gene expression cascades, and regulatory interactions

between genes are deduced, enabling a detailed characterization of the molecular processes underlying cellular transitions.
Transcriptional cascades during cortical neuron differentiation

We first applied our method to differentiating forebrain dorsal neural stem cells during mouse development at embryonic stage e13.5. The

input to the method consists of a set of cells ordered by pseudotime, t = 1;.;N, and the expression levels (counts) of genes within those

cells. Cells from the Atlas of the DevelopingMouse Brain22 were initially subset to non-dividing forebrain dorsal cells consisting of neural stem

cells, intermediate progenitors (IPs), and neurons at embryonic stage e13.5. A pseudotime ordering was estimated using diffusion pseudo-

time9 (Figure S2). All dividing cells were excluded for the pseudotime estimation due to their expression of a transcriptional program that is

independent of the underlying cell type, potentially confounding pseudotime estimates.

In differentiating cells along the mouse e13.5 forebrain dorsal neural stem cell (NSC)/ IP/ neuron trajectory, 60 out of 510 (11.8%) tran-

scription factors (derived from the studyby Lambert et al.23) that were expressed in at least 1%of cells had a non-uniformfit (Figure 1; Table S1).

Initially,Gli3, a gene that is required formaintaining cortical progenitors in active cell cycle,24 wasdown-regulated in a state-switchmannerwith

a sigmoidal fit, alongwith Sox9 andHes1, which are both required for neural stem cell maintenance.25,26 Subsequently, other genes important

for neural stem cell maintenance including Sox1, Sox2, Hes5, and Pax6 were down-regulated. Genes exhibiting a state-switch or stepwise
2 iScience 27, 109386, April 19, 2024
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Figure 1. Transcriptional cascades in mouse 13.5 forebrain dorsal cells

(A) Gene expression profiles of transcription factors with non-uniform fits are displayed as a heatmap. Genes are grouped according to a state-switch from high to

low expression (sigmoidal fit) or stepwise down-regulation (double sigmoidal fit), a state-switch from low to high expression (sigmoidal fit) or stepwise up-

regulation (double sigmoidal fit), a transient up (Gaussianor double sigmoidal fit) expressionpattern, and transient down (double sigmoidal fit) expressionpattern.

(B) The inflection point estimates are shown for the same genes as in (A). Inflection point estimates fromdouble sigmoidal fits are shown in light blue and light red,

and those from Gaussian and sigmoidal fits in blue and red.
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up-regulation includedNeurod2, Sox11, andNeurod6, which play a critical role in inducing cell-cycle arrest and neurogenic differentiation in

the developing cortex,27–29 followedby Tbr1 andBcl11b, markers of deep-layer cortical neurons generatedduring early cortical neurogenesis.

Subsequently, Satb2 and Bhlhe22, markers of upper-layer cortical neurons generated during later stages of neurogenesis,30 were up-regu-

lated. Interestingly, four transcription factors were found to be transiently down-regulated using a double sigmoidal fit, including Mycn,

Jun, Ybx1, and Jund. Genes exhibiting a transient up-regulation (Gaussian or double sigmoidal fit) included Hes6 and Eomes, markers of

cortical IPs,31 as well as Neurog2 and Sox4, which are required for IP cell specification and maintenance via activation of Eomes.32

These results demonstrate that the functions which best fit the expression profiles of dynamically expressedgenes (genes exhibiting a non-

uniform fit) largely reflect the known biological role these genes play during differentiation. Furthermore, the relative ordering of inflection

point estimates for dynamically expressed transcription factors along the mouse e13.5 forebrain dorsal NSC/ IP/ neuron trajectory accu-

rately recapitulates known temporal orderings that are essential for the differentiation of cortical neurons. Finally, in order to justify the func-

tional forms we used, we performed a PCA of the gene expression profiles. Genes with a non-uniform fit fill the extremes of the principal

component space (Figure S3), indicating that the functional forms we used to model the pseudotime-ordered gene expression profiles

are able to capture most of the variability in the data.
iScience 27, 109386, April 19, 2024 3



Figure 2. Reconstructing regulatory interactions during mouse e13.5 cortical development

(A) Normalized expression levels of essential genes — Pax6, Neurog2, Eomes, and Tbr1 — forming a regulatory network underlying cortical neuron

differentiation, as well as the neural lineage bHLH factor, Neurod4, across pseudotime-ordered cells are shown. The curves display a random sampling of

the parameters from 100 iterations of the MCMC traces for the best-fitting model for each gene.

(B) Inflection point estimates for the genes highlighted in (A).

(C) A reconstructed gene regulatory network based on the comparison of inflection points. Positive regulatory interactions which have previously been validated

are highlighted as a green solid line, and those which have not been validated as a green dashed line. Similarly, negative regulatory interactions which have

previously been validated are highlighted as a red solid line, and those which have not been validated as a red dashed line.
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Constructing regulatory interactions during cortical neurogenesis

We then compared a set of transcription factors forming an essential regulatory network underlying cortical neuronal differentiation including

Pax6,Neurog2, Eomes, and Tbr1,33 as well as the neural lineage bHLH factor,Neurod4 (Figure 2A).Neurog2 and Eomes exhibited a transient

up-regulation, with both genes having a double sigmoidal fit. Pax6 and Tbr1 were fit using a sigmoidal function, with Pax6 exhibiting a state-

switch from high to low expression, and Tbr1 from low to high expression. Neurod4 was fit using a Gaussian function, and was specifically

expressed transiently in mid-stage Eomes+ cells.

These genes were then ordered according to the pseudotemporal occurrence of inflection point estimates (Figure 2B), wherebyNeurog2

was found to be up-regulated beforeEomes, followedby the up-regulation ofNeurod4 anddown-regulation of Pax6. Subsequently, Tbr1was

up-regulated, followed by down-regulation ofNeurod4,Neurog2, and finally Eomes.Neurod4 exhibited a brief, transient impulse expression

pattern within mid-stage Eomes+ cells, reflecting previously studied expression patterns of Neurod4, which is only expressed in a subset of

Eomes+ cells in the mouse e14.5 cortex.34

By comparing inflection point estimates of these genes (see STAR Methods), we were able to reconstruct previously validated regulatory

interactions (Figure 2C). The initial up-regulation of Neurog2 just before Eomes up-regulation suggests that Neurog2 initiates expression of

Eomes in intermediate progenitors. This relationship has been shown in mouse e13 embryos via electroporation of Neurog2 cDNA into the

ganglionic eminence, where bothNeurog2 and Eomes are not expressed, resulting in ectopic expression of Eomes.35Neurog2 has also been

shown to directly activate Neurod4 in cortical IP cells using a luciferase reporter assay,36 which we also recapitulate based on the sequential

up-regulation of Neurog2 and Neurod4. Furthemore, it has been shown that both Neurog2 and Eomes induce Tbr1 expression,36 which we

also infer based on the up-regulation of Tbr1 following both Neurog2 and Eomes. Interestingly, directly after Eomes and Neurog2 were up-

regulated, Pax6 was down-regulated, suggesting a negative feedback loop, whereby Pax6 activates both Eomes and Neurog2, which then

both in turn repress Pax6, a relationship which has been previously described in the developing mouse cortex.37

Inferring shared upstream regulators of Eomes

We next explored potential upstream regulators of Eomes in mouse e13.5 forebrain dorsal cells across two samples in order to deduce high

confidence regulators of Eomes and determine how robust our method is across biological replicates. We applied our method to forebrain

dorsal cells in a mouse e13.5 biological replicate (Figure S4; Table S2). Transcription factors with a positive inflection point occurring simul-

taneously with or before the first inflection point of Eomes, as well as those with a negative inflection point occurring after the first inflection
4 iScience 27, 109386, April 19, 2024



Figure 3. Inferring upstream regulators of Eomes across mouse e13.5 embryos

(A) The left and right plots show a transcriptional cascade of the shared potential positive regulators of Eomes in forebrain dorsal cells of mouse e13.5 embryos

across biological replicates. Transcriptional co-activators and co-repressors (derived from the study by Siddappa et al.38) are shown in orange, and transcription

factors (derived from the study by Lambert et al.23) are shown in black.

(B) The left panel in the plot displays a random sampling of the parameters from 100 iterations of the MCMC traces for the genes Eomes and Mycn using the

double sigmoidal model, the best-fitting model for both genes. The full range of first and second inflection point estimates for both genes is highlighted as

a shaded region, with blue indicating a negative inflection point and red a positive inflection point. The middle and right panels highlight the distribution of

first and second inflection point estimates across MCMC iterations, respectively. The right panel highlights the distribution of second inflection point

estimates across MCMC iterations. p values were estimated as the percentage of overlapping inflection point estimates across both genes after binning the

inflection point estimates across all MCMC iterations to 100 equally spaced bins, starting at the minimum inflection point estimate and ending at the

maximum inflection point estimate across both genes.

(C) The same plot for (B) in cortical cells of the biological replicate.
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point of Eomes, were labeled as positive upstream regulators. We furthermore included all co-activators and co-repressors (derived from the

study by Siddappa et al.38) that exhibited a transient up-regulation, with the first inflection point occurring simultaneously with or before the

first inflection point of Eomes. In total, 25 positive upstream regulators were found in the first sample, and 27were found in the second sample,

with an overlap of 21 genes across the two (Figure 3A; Figure S5). Furthermore, the relative ordering of inflection points of these genes along

the cortical differentiation trajectory strongly agrees across both datasets, with one exception being Tfap2c, which was fit to a sigmoidal func-

tion in the first sample, and Gaussian function in the second sample.

Within the set of inferred transcription factors regulating Eomes expression wereNeurog2 and Pax6, which are known to directly activate

Eomes in the developing mouse neocortex, as described in the previous section. The co-regulators Dll1, a key ligand for activating Notch

signaling, and Chd7, a chromatin remodeler, have also been implicated in the formation of IP cells,39,40 although their role as a co-activator

of Eomes has not been established to our knowledge. These results validate the utility of our method in discovering upstream regulators of a

given gene of interest. The remaining potential activators of Eomes warrant further experimental validation.

Furthermore, thegenes that repressEomes inmaturing IPcells, therebyenabling thedifferentiationof these cell types intoneurons, are largely

unknown.33 The transcription factorMycn, a gene critical for normal brain development,41 has been shown todown-regulateEomes in neuroblas-

toma cell lines42; however, its role in regulatingEomes expression inmaturing IP cells is notwell understood. Indifferentiating cells along the fore-

braindorsalNSC/ IP/ neuron trajectory inbothmouse e13.5 samples,Mycnwasexpressed in a transientdown-regulationpattern andbest fit

using a double sigmoidal function (Figures 3B and 3C). In both samples,Mycn up-regulation occurred simultaneously with Eomes down-regula-

tion, signifying thatMycnmay play a role in the differentiation of cortical neurons by down-regulating Eomes in maturing IPs.

Dissecting Notch signaling during cortical neurogenesis

To demonstrate the applicability of ourmethod to genes beyond transcription factors, we investigated the dynamics of Notch signaling along

the forebrain dorsal NSC/ IP/ neuron trajectory in e13.5 mouse embryos. Shared dynamically expressed genes involving ligand-receptor

pairs of Notch receptors from the study by Shao et al.43 in both embryonic samples were estimated (Figure 4).
iScience 27, 109386, April 19, 2024 5



Figure 4. Notch signaling cascade in mouse e13.5 embryos

The left and right plots show a transcriptional cascade of the shared ligand-receptor pairs involved inNotch signaling in cells along the forebrain dorsal NSC/ IP

/ neuron trajectories in mouse e13.5 embryos across biological replicates. Annotated cell types are highlighted below.
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In both samples, Mfap2, which can interact with the extracellular domain of Notch1,44 however whose role is poorly understood in the

regulation and differentiation of cortical NSCs, was up-regulated within forebrain dorsal NSCs, and down-regulated in neuronal cells. This

indicates thatMfap2may play a general role in Notch signaling within differentiating cortical NSCs, whose actions are not specific to a given

cell type.Dll1was up-regulated in early IPs, followedby the up-regulation ofDll3 in later stage IPs, confirming the selective basal expression of

Dll3 from in vivo studies.33 Furthermore,Mfng, a glycosyltransferase which increases the ability ofNotch1 to bind to Dll1,45 was up-regulated

shortly afterDll1 up-regulation in both samples within IPs, indicating that this gene becomes activated sequentially after the activation ofDll1.

Dll1 was then down-regulated within IPs, suggesting that this gene is not essential for further IP differentiation into neurons. Finally, Notch1

was down-regulated in maturing IPs, followed by down-regulation ofMfap2,Mfng, and Dll3 in neurons. These results highlight the ability of

our method to dissect the complex dynamics of signaling pathways within differentiating cell types.
Transcriptional cascades in mouse pancreatic beta cell development

To demonstrate the utility of our method in other developmental contexts, we applied our method to a scRNA-seq dataset of pancreatic cells

derived frommouse e14.5 embryos,46 subsetting to cells belonging to the beta cell lineage.Whenmeasuring the expressiondynamics of a set

of genes known to play an essential role in the specification and maturation of pancreatic beta cells,8 we find a well-defined transcriptional

cascade which largely agrees with previously characterized gene expression cascades (Figure 5A). Interestingly, we find one exception to this

cascade, Neurod1, which is up-regulated at a later stage of beta cell maturation than previously reported (Figures 5B and 5C). We are also

able tomeasure the sequential up-regulation of Pax6 and Pdx1, followed byMnx1, and ending with the insulin gene expression regulator Isl1,

thereby providing a more explicit ordering of the expression cascade in maturing beta cells than previously established. Furthermore, with

this approach, we can model the expression dynamics of all transcription factors (Figure S6; Table S3), enabling a detailed overview of the full

gene expression cascade underlying pancreatic beta cell differentiation.
DISCUSSION

In this paper, we explored an approach to model the gene expression dynamics in cells ordered by a pseudotime trajectory using a fully

Bayesian framework. This framework enabled us to fit the gene expression profiles of cells undergoing cell state transitions to a set of func-

tions that are able tomodel complex transcriptional dynamics. From these fits, we were able to order genes along a gene expression cascade

which describes the molecular dynamics underlying cell state transitions, and deduce regulatory interactions.

We first applied the method to differentiating forebrain dorsal neural stem cells into neurons in mouse e13.5 embryos. By ordering tran-

scription factors by the relative occurrence of inflection point estimates, we were able to reconstruct the transcriptional cascades underlying

neuronal differentiation within the developing cortex, andmodel the dynamics of gene expression for all genes along the trajectory. However,

genes can undergo further dynamic changes including post-transcriptional and post-translational modifications, and localization changes

within the cell, all of which can have a large impact on function and regulation. While transcriptomics data are unable to identify these

changes, the dynamics we uncover from gene expression data can still shed light on their regulatory roles.

By comparing the relative timing of expression dynamics of the transcription factors Pax6, Neurog2, Eomes, Neurod4, and Tbr1, which

form a regulatory network underlying cortical neuron differentiation, wewere able to infer known causal interactions. However, reconstructing

a gene regulatory network using all genes with a non-uniform fit would lead tomany false positives, in part due to the simultaneous activation

of multiple pathways involving different genes. Thus, we believe one of the main utilities of our approach is to infer the directionality of reg-

ulatory interactions, especially in cases where an interaction has been measured but the directionality is unknown.

We then identified potential upstream positive regulators of Eomes, an essential gene for the formation of IPs. Subsetting to genes which

have similar dynamics across biological replicates revealed a set of high-confidence potential upstream regulators. Not only did we recover

validated activators of Eomes, such as Pax6 andNeurog2, but we also detected a number of other transcription factors whose roles in Eomes

activation have not been fully characterized. The enrichment of known DNA-binding motifs of these transcription factors in the promoter and
6 iScience 27, 109386, April 19, 2024



A B C

Pdx1

Neurog3

Neurod1

Nkx2-2

Pax4

Nkx6-1

Isl1
Pax6
Mnx1
Pdx1

Pdx1
Neurog3

Nkx2-2

Pax4

Nkx6-1

Neurod1

Pax6
Pdx1

Mnx1

Isl1

Wilson et al., 2003

Cell Type

Figure 5. Gene expression cascades in developing mouse e14.5 pancreatic beta cells

(A) Schematic diagram of the previously characterized gene expression cascade in developing pancreatic beta cells, based on the study by Wilson et al.8

(B) The heatmap in the upper panel highlights the expression profiles of transcription factors ordered by the occurrence of their first inflection points. Inflection

point estimates are highlighted in the plot below using the same ordering, with double sigmoidal fits shown in light blue and light red, and those from Gaussian

and sigmoidal fits in blue and red. The annotated cell type for each cell in the trajectory is highlighted in the middle.

(C) Modified gene expression cascade based on inflection point estimates from (B).
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enhancer regions of Eomes may provide further evidence for the regulatory role of these genes in Eomes expression. We also identified a

potential negative regulator of Eomes, the transcription factor Mycn, whose role in cortical IP maturation has not been fully explored. Wet

lab experiments, such as knockin or knockout experiments, or chromatin immunoprecipitation sequencing experiments, would need to

be performed in order to validate the roles of these transcription factors in the regulation of Eomes expression.

We further demonstrated the applicability of our method to genes beyond transcription factors by comparing the expression dynamics of

genes involved in theNotch signaling pathway. This analysis revealed a sequential up-regulation of theNotch receptor ligandDll1 in early IPs,

followedbyMfng, andfinallyDll3 inmaturing IPs. This activation cascade supported the selectiveexpressionofDll1andDll3 in apical andbasal

IPs, respectively, further demonstrating the utility of comparing genes according to inflection point estimates to dissect signaling pathways.

We also applied ourmethod to differentiating pancreatic beta cells inmouse e14.5 embryos. Based on this analysis, wewere able to recon-

struct a gene expression cascade that defines beta cell maturation. In this analysis, we highlighted a gene that deviated from the established

literature,Neurod1, whose up-regulation along the cascade occurred later during beta cell development than previously established. Follow-

up experiments are needed to validate these findings.

In order to place our method in a broader context, we compared our results with Monocle 312 and tradeSeq,16 which perform statistical

tests to determine if a gene is differentially expressed along a pseudotime trajectory, in cells from the e13.5 forebrain dorsal NSC / IP/

neuron trajectory. While the overwhelmingmajority of genes with a non-uniform fit from ourmethodwere also found to be significantly differ-

entially expressed by these two methods, both methods detected at least six times more genes to be significant compared to our method

(Figure S7). Thus, we conclude that our method is more stringent in detecting genes exhibiting dynamic changes along a trajectory. Further-

more, while the relative ordering of gene expression dynamics along a trajectory is not readily available using these twomethods, we are able

to explicitly infer this using our method based on inflection point estimates. Similar to our method, the authors of the original diffusion pseu-

dotime publication used derivative estimates of smoothed gene expression profiles to order gene dynamics along a pseudotime trajectory.9

However, the authors only used derivative estimates to measure switch-like transitions and not transient up or down transitions, and only pro-

vide point estimates of these transitions.We are able tomodel a higher variety of transitions, and based on theMCMCsamplings, quantify the

uncertainty in the timing of these transitions using the posterior distribution of the parameter fits.

To measure the dependence of our method on the pseudotime method used to order cells, we ran our method on the pseudotime-or-

dered cells from the e13.5 forebrain dorsal NSC/ IP/ neuron trajectory using both Slingshot10 andMonocle 3,12 and compared themwith

the diffusion pseudotime estimates (Figure S8). Overall, the fits were largely consistent independent of the pseudotimemethod used to order

the cells, indicating that our method is robust to fluctuations in pseudotime estimates and underlying pseudotime method.

While we focused specifically on cells along the forebrain dorsal NSC / IP / neuron trajectory, and pancreatic beta cell development,

the method presented in this paper can be applied to any scRNA-seq dataset where cells can be ordered along a pseudotime trajectory. Our

method is able to reconstruct transcriptional cascades in order to deduce critical genes for cell state transitions. It is also able to predict reg-

ulatory interactions, as well as gene interactions involved in different signaling pathways. Therefore, we believe this approach can provide

useful insights into the molecular underpinnings involved in a variety of developmental biology contexts.
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Limitations of the study

Wedo not perform any experiments to validate the derived regulatory interactions fromdifferentiatingmouse e13.5 forebrain dorsal neurons.

Furthermore, deriving regulatory interactions based on all genes with a non-uniform fit along a trajectory would lead to many false positive

interactions. Therefore, incorporating other databases and/or scATAC-seq datasets to measure the enrichment of DNA-binding motifs of a

transcription factor in the promoter or enhancer regions of an inferred target would provide more evidence of the interaction, which we plan

to incorporate in future research.
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9. Haghverdi, L., Büttner, M., Wolf, F.A.,
Buettner, F., and Theis, F.J. (2016). Diffusion
pseudotime robustly reconstructs lineage
branching. Nat. Methods 13, 845–848.
https://doi.org/10.1038/nmeth.3971.

10. Street, K., Risso, D., Fletcher, R.B., Das, D.,
Ngai, J., Yosef, N., Purdom, E., and Dudoit, S.
(2018). Slingshot: cell lineage and
pseudotime inference for single-cell
transcriptomics. BMC Genom. 19, 477.
https://doi.org/10.1186/s12864-018-4772-0.

11. Setty, M., Kiseliovas, V., Levine, J., Gayoso, A.,
Mazutis, L., and Pe’er, D. (2019).
Characterization of cell fate probabilities in
single-cell data with Palantir. Nat. Biotechnol.
37, 451–460. https://doi.org/10.1038/s41587-
019-0068-4.

12. Cao, J., Spielmann, M., Qiu, X., Huang, X.,
Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos,
S., Christiansen, L., Steemers, F.J., et al.
(2019). The single-cell transcriptional
landscape of mammalian organogenesis.
Nature 566, 496–502. https://doi.org/10.
1038/s41586-019-0969-x.

13. Campbell, K.R., and Yau, C. (2019). A
descriptive marker gene approach to single-
cell pseudotime inference. Bioinformatics 35,
28–35. https://doi.org/10.1093/
bioinformatics/bty498.

14. Lange, M., Bergen, V., Klein, M., Setty, M.,
Reuter, B., Bakhti, M., Lickert, H., Ansari, M.,
Schniering, J., Schiller, H.B., et al. (2022).
CellRank for directed single-cell fate
mapping. Nat. Methods 19, 159–170. https://
doi.org/10.1038/s41592-021-01346-6.

15. Ji, Z., and Ji, H. (2016). TSCAN: Pseudo-time
reconstruction and evaluation in single-cell
RNA-seq analysis. Nucleic Acids Res. 44, 117.
https://doi.org/10.1093/nar/gkw430.

16. Van den Berge, K., Roux de Bézieux, H.,
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G., Okamoto, M., Gao, T., Li, M., Sestan, N.,
and Haydar, T.F. (2020). Transcriptional
priming as a conservedmechanism of lineage
diversification in the developing mouse and
human neocortex. Sci. Adv. 6, eabd2068.
https://doi.org/10.1126/sciadv.abd2068.

35. Ochiai, W., Nakatani, S., Takahara, T.,
Kainuma, M., Masaoka, M., Minobe, S.,
Namihira, M., Nakashima, K., Sakakibara, A.,
Ogawa, M., and Miyata, T. (2009).
Periventricular notch activation and
asymmetric Ngn2 and Tbr2 expression in
pair-generated neocortical daughter cells.
Mol. Cell. Neurosci. 40, 225–233. https://doi.
org/10.1016/j.mcn.2008.10.007.

36. Sessa, A., Ciabatti, E., Drechsel, D.,
Massimino, L., Colasante, G., Giannelli, S.,
Satoh, T., Akira, S., Guillemot, F., and
Broccoli, V. (2017). The Tbr2 Molecular
Network Controls Cortical Neuronal
Differentiation Through Complementary
Genetic and Epigenetic Pathways. Cerebr.
Cortex 27, 3378–3396. https://doi.org/10.
1093/cercor/bhw270.

37. Kovach, C., Dixit, R., Li, S., Mattar, P.,
Wilkinson, G., Elsen, G.E., Kurrasch, D.M.,
Hevner, R.F., and Schuurmans, C. (2013).
Neurog2 Simultaneously Activates and
Represses Alternative Gene Expression
Programs in the Developing Neocortex.
Cerebr. Cortex 23, 1884–1900. https://doi.
org/10.1093/cercor/bhs176.

38. Siddappa, M., Wani, S.A., Long, M.D., Leach,
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Theis, F.J., et al. (2019). Massive single-cell
mRNA profiling reveals a detailed roadmap
for pancreatic endocrinogenesis.
Development 146, dev.173849. https://doi.
org/10.1242/dev.173849.
10 iScience 27, 109386, April 19, 2024
47. Wolf, F.A., Angerer, P., and Theis, F.J. (2018).
SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19,
15. https://doi.org/10.1186/s13059-017-
1382-0.

48. McGinnis, C.S., Murrow, L.M., and Gartner,
Z.J. (2019). DoubletFinder: Doublet
Detection in Single-Cell RNA Sequencing
Data Using Artificial Nearest Neighbors. Cell
Syst. 8, 329–337.e4. https://doi.org/10.1016/j.
cels.2019.03.003.

49. McInnes, L., Healy, J., and Melville, J. (2018).
UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. Preprint
at arXiv. https://doi.org/10.48550/ARXIV.
1802.03426.

50. Blondel, V.D., Guillaume, J.L., Lambiotte, R.,
and Lefebvre, E. (2008). Fast unfolding of
communities in large networks. J. Stat. Mech.
2008, 10008. https://doi.org/10.1088/1742-
5468/2008/10/P10008.

51. Svensson, V. (2020). Droplet scRNA-seq is not
zero-inflated. Nat. Biotechnol. 38, 147–150.
https://doi.org/10.1038/s41587-019-0379-5.

52. Lause, J., Berens, P., and Kobak, D. (2021).
Analytic Pearson residuals for normalization
of single-cell RNA-seq UMI data. Genome
Biol. 22, 258. https://doi.org/10.1186/s13059-
021-02451-7.
53. Foreman-Mackey, D., Hogg, D.W., Lang, D.,
and Goodman, J. (2013). emcee: The MCMC
Hammer. Publ. Astron. Soc. Pac. 125,
306–312. https://doi.org/10.1086/670067.

54. Hou, F., Goodman, J., Hogg, D.W., Weare, J.,
and Schwab, C. (2012). An Affine-Invariant
Sampler for Exoplanet Fitting and Discovery
in Radial Velocity Data. Astrophys. J. 745, 198.
https://doi.org/10.1088/0004-637X/745/
2/198.

55. Schwarz, G. (1978). Estimating the Dimension
of a Model. Ann. Stat. 6, 461–464. https://doi.
org/10.1214/aos/1176344136.

56. Hogg, D.W., and Foreman-Mackey, D. (2018).
Data Analysis Recipes: Using Markov Chain
Monte Carlo. Astrophys. J. Suppl. 236, 11.
https://doi.org/10.3847/1538-4365/aab76e.

57. Link, W.A., and Eaton, M.J. (2012). On
thinning of chains in MCMC: Thinning of
MCMC chains. Methods Ecol. Evol. 3,
112–115. https://doi.org/10.1111/j.2041-
210X.2011.00131.x.

58. Harms, R.L., and Roebroeck, A. (2018). Robust
and Fast Markov Chain Monte Carlo
Sampling of Diffusion MRI Microstructure
Models. Front. Neuroinf. 12, 97. https://doi.
org/10.3389/fninf.2018.00097.

https://doi.org/10.1093/bib/bbaa269
https://doi.org/10.1093/bib/bbaa269
https://doi.org/10.1074/jbc.M600298200
https://doi.org/10.1074/jbc.M600298200
https://doi.org/10.1038/35019000
https://doi.org/10.1038/35019000
https://doi.org/10.1242/dev.173849
https://doi.org/10.1242/dev.173849
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/s41587-019-0379-5
https://doi.org/10.1186/s13059-021-02451-7
https://doi.org/10.1186/s13059-021-02451-7
https://doi.org/10.1086/670067
https://doi.org/10.1088/0004-637X/745/2/198
https://doi.org/10.1088/0004-637X/745/2/198
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.3847/1538-4365/aab76e
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.3389/fninf.2018.00097
https://doi.org/10.3389/fninf.2018.00097


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Atlas of the Developing Mouse Brain La Manno et al.22 http://mousebrain.org/development/downloads.html

Mouse Pancreas Endocrinogenesis Dataset GSE13218846 http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE132188

Software and algorithms

python www.python.org https://www.python.org/downloads/release/python-397/

scanpy pypi.org https://pypi.org/project/scanpy/1.9.1/

matplotlib pypi.org https://pypi.org/project/matplotlib/3.5.1/

numpy pypi.org https://pypi.org/project/numpy/1.21.6/

scipy pypi.org https://pypi.org/project/scipy/1.8.0/

emcee emcee.readthedocs.io https://emcee.readthedocs.io/en/stable/user/install/

R cran.r-project.org https://cran.r-project.org/src/base/R-4/R-4.0.2.tar.gz

Monocle 3 bioconductor.org https://cole-trapnell-lab.github.io/

monocle3/docs/installation/

Slingshot bioconductor.org https://bioconductor.org/packages/devel/bioc/

vignettes/slingshot/inst/doc/vignette.html

tradeSeq bioconductor.org https://bioconductor.org/packages/devel/bioc/

vignettes/tradeSeq/inst/doc/tradeSeq.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Daniel Rosebrock (rosebroc@molgen.

mpg.de).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
� All original code has been deposited at https://github.com/daniel-rosebrock/transcriptional_cascades and is publicly available as of

the date of publication.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Processing scRNA-Seq of mouse e13.5 forebrain dorsal samples

The raw count data from the Atlas of the DevelopingMouse Brain22 was downloaded from http://mousebrain.org/development/downloads.

html. The raw count data was loaded into scanpy47 for downstream analyses. Cells were then initially subset to samples corresponding to

e13.5 embryos derived from the forebrain dorsal tissue (labeled as ‘ForebrainDorsal’ in the metadata), and further subset to ‘Radial glia’

and ‘Neuron’ cell types. The first sample (‘SampleName’ = ‘G23’) and second sample (‘SampleName’ = ‘G9’) were analyzed separately.

Initially, in both sample, cells with a DoubletFinderPCA48 score above 0.5 were filtered to remove potential doublets. Following this, the count

data was normalized using scanpy’s ‘normalize_total’ function, followed by a natural log transformation and adding a pseudocount of 1. High-

ly variable genes were estimated using scanpy’s ‘highly_variable_genes’ function, after which a principal component analysis was run using

the highly variable genes. A kNN graph was estimated from the top 50 principal components using k = 15 nearest neighbors based on the

UMAP neighborhood selection approach.49 Following this, Louvain clustering50 was performed using a resolution parameter of 1.5. Clusters
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exhibiting high expression levels of G2M cell cycle genes were subsequently filtered, as well as clusters with a subpallium (ventral cortical)

identity, hippocampal identity, and Cajal-Retzius neurons. The above procedure was re-run until the only subsequent populations in the sam-

ple consisted of forebrain dorsal NSCs, IP cells, or neurons based on the expression of known marker genes for the respective populations.

Diffusion pseudotime estimates9 for each cell were then estimatedwas after running a diffusionmap embedding and assigning a starting cell.

The raw count data across all cells ordered by diffusion pseudotime were then stored and the MCMC procedure was run on the resulting

count matrix.

Processing scRNA-Seq of mouse e14.5 pancreas development samples

The raw count data for the pancreas endocrinogenesis dataset46 was downloaded from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE132188. The raw count data was loaded into scanpy47 for downstream analyses. Cells were then initially subset to samples corre-

sponding to e14.5 embryos. All cells with a positive G2M score in the metadata were initially filtered. Following this, the count data was pro-

cessed in a similar fashion to the Atlas of the Developing Mouse Brain dataset using scanpy. Diffusion pseudotime estimates were calculated

and the raw count data across all cells ordered by diffusion pseudotime were then stored and the MCMC procedure was run on the resulting

count matrix.

Establishing a likelihood model

The negative binomial distribution has been shown to accurately describe the count data generated in scRNA-Seq experiments without the

need to account for zero-inflation resulting from ‘‘dropout’’ events.51 The probability mass function for the negative binomial distribution can

be parameterized using the mean, m˛R+, and dispersion parameter, 4˛R+, with y ˛N, as follows,

pðyjm;4Þ =

�
y +4 � 1
y

��
m

m+4

�y�
4

m+4

�4

: (Equation 2)

The mean and variance of the random variable Y � NBðm;4Þ which follows a negative binomial distribution is then E½Y � = m and Var½Y � =

m+ m2

4
. For a gene g with measured counts of Y

!
g = fygtgt = 1;::;N along a pseudotime trajectory with fixed pseudotime-step interval, m!g =

fmgtgt = 1;.;N and 4!g = f4gtgt = 1;.;N the mean and dispersion at corresponding pseudotimes, the full likelihood of observing Y
!

g is:

L

�
m!g

����Y!g; 4
!

g

�
=
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t = 1

p
�
ygt
���mgt ;4gt

�
; (Equation 3)

where pðygt
���mgt ;4gtÞ is the negative binomial probability mass function. The full log-likelihood is then:

ln

�
L

�
m!g

����Y!g; 4
!

g

��
=
XN
t = 1

ln
�
p
�
ygt
���mgt ;4gt

��
: (Equation 4)

It was shown that when fitting scRNA-Seq UMI count data to a negative binomial model, data are consistent with a global dispersion

parameter independent of the expression level of a given gene, and that fitting a dispersion parameter to each gene individually leads to

overfitting.52 Therefore, a global estimate of 4 can be used for every gene independent of pseudotime, and 4g
�! = f4gtgt = 1;.;N is replaced

with a constant4 in Equation 4. A dataset specific4 using geneswhich exhibit lower levels of overdispersion is estimated, since the expression

levels in these genes reflect the technical rather than the biological variability. To do this, the log10mean counts for each gene are binned into

five equally spaced bins, and a linear fit between log10 mean and log10 variance of counts in each bin is estimated. Genes within the top 20th

percentile of the difference between the estimated variance and the expected variance using the linear fit in each bin are then filtered. The

remaining genes are used to fit the non-linear relationship between the mean (m) and variance (s2 = m+ m2

4
) using unconstrained non-linear

least squares (Figure S9).

Here, 4 estimates the dispersion based on genes which do not exhibit high variability in the dataset, and therefore captures the technical

variability in the dataset. This technical variability is in large part driven by the varying number of UMI counts captured in each cell, as well as

other factors including library quality and amplification bias. Thus, the full log-likelihood of observing counts Y
!

g = fygtgt = 1;::;N for gene g

along a pseudotime trajectory given the mean at corresponding pseudotime points m!g = fmgtgt = 1;.;N, becomes,

ln

�
L

�
m!g

����Y!g;4

��
=
XN
t = 1

ln
�
p
�
ygt
���mgt ;4

��
; (Equation 5)

where 4 is a global parameter estimated using the procedure described above.

For scRNA-Seqmethods which sequence only from one end of the transcript and not full-length protocols, normalization does not need to

account for the total transcript length. In this case, for a given cell i, letMi be the number of UMIs in cell i, and ygi be the number of UMIs for

gene g in cell i. In this paper, we use themedian number of UMIs across all cells in the dataset as a size factor ~M, that is, ~M = medfMigi = 1;.;N.

Then, the log-normalized expression levels for gene g in cell i is defined by the following mapping,
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h
�
ygi
�

= ~ygi = ln

�
ygi
Mi

~M + 1

�
: (Equation 6)

The functions ðfunif ; fgauss; fsig; fdsigÞ described in Equation 1 are then fit to the pseudotemporally ordered expression profile for gene g,

f~ygtgt = 1;.;N, in the log-normalized expression space with the objective function to maximize defined by the likelihood in Equation 5. The

means m!g = fmgtgt = 1;.;N are then calculated by mapping the function values evaluated at t = 1;.;N back to count space using the inverse

of Equation 6. The full log-likelihood estimate is then evaluated by plugging in the m!g values and global estimate for 4 into Equation 5.

This procedure can be summarized as follows. We want to solve for faðt; qÞ, which maximizes the following likelihood,

ln

�
L

�
m!g

����Y!g;4

��
=
XN
t = 1

ln
�
p
�
ygt
���h� 1ðfaðt; qÞÞ;4

��
; (Equation 7)

where fa ˛ ðfunif; fgauss; fsig; fdsigÞ.
Model inference using MCMC

Under the framework presented above, solving for faðt; qÞÞ can be formulated as a Bayesian inference problem, which we solve using an

ensemble sampler MCMC approach.19 This provides an estimate of the posterior distribution over the parameter space for each of the pa-

rameters in the different functions ðfunif; fgauss; fsig; fdsigÞ described in Equation 1. For each of the models, the priors used for the different pa-

rameters are summarized in Table S4.

Note, in Table S4, the folded normal distribution is parameterized by m> 0 and s> 0 with probability density function,

p
�
x;m; s2

	
=

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e� ðx�mÞ2
2s2 +

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e� ðx+mÞ2
2s2 : (Equation 8)

The uniform priors in Table S4 are uninformative, however, they provide bounds on the parameters to keep them in interpretable and

meaningful ranges. The slope parameters k in the sigmoidal function, and k1 and k2 in the double sigmoidal function, have a folded normal

prior with 0-mean and 0.1 variance, which is used to ensure that the slope has a low magnitude. This prior is used because differences in the

function once the slope becomes relatively large are minimal. Finally, the folded normal prior on s in the Gaussian with 0-mean and N= 10

variance is used to ensure that the curve does not become very flat.

In this paper, we use the ensemble sampler MCMC proposed by Goodman &Weare in 201019 with implementation by Foreman–Mackey

et al.53 An initial guess is needed as a starting point from which a walker begins in the ensemble sampler. For the Gaussian and sigmoidal

functions, initial guesses are derived from a non-linear least squares fit for each function on the log-normalized pseudotime expression levels

using scipy’s ‘curve_fit’ function, with added Gaussian noise. For the double sigmoidal function, initial guesses are randomly chosen to cover

the varieties of different forms the functions can have. For the uniform function, initial guesses are randomly chosen froma uniformdistribution

over the interval 0.01 and maximum expression level for the gene of interest. The number of walkers used is four times the number of param-

eters for each function—28 for the double sigmoidal fit, 16 for theGaussian fit, 16 for the sigmoidal fit, and 4 for the uniform fit. This enables a

wide sampling across the search space of parameters.

TheMCMC is then run for a total of 10,000 iterations. There is generally no consensus on howmany iterations to run anMCMCalgorithm.53

Thousands of iterations are typically desirable to allow the process to reach a steady-state. After reaching the steady-state, the MCMC will

sample from the posterior distribution over the parameter space, enabling an estimate of the posterior distribution for each parameter. It-

erations before reaching the steady-state are discarded, as these are not sampled from the target distribution. This is called the ‘‘burn-in’’

phase. For this implementation, a burn-in of 5; 000 iterations was used (Figure S10).

Some MCMC walkers can get stuck near a local maximum. These walkers typically have a low acceptance rate, that is the proportion of

moves for which the MCMC sampler generated parameter values that differed from the previous sample. One common practice is to prune

these walkers from the final MCMC output. For example, walkers can be pruned which get stuck in irrelevant local optima by clustering the

likelihood of the walkers and removing the clusters with lower likelihoods.54 For this implementation, half of the MCMC walkers are pruned

with the lowest acceptance rate in order to remove potentially stuck walkers (Figure S11).
Model selection

We use a probabilistic model selection technique, the bayesian information criterion (BIC)55 to score the different models, and select the

model with the best score. The BIC is defined as follows,

BIC = k lnðnÞ � 2 lnðbLÞ; (Equation 9)

where n = number of data points, k = number of parameters in themodel, and bL = maximized value of the likelihood function. In the original

formulation of the BIC, the value bL was derived frommaximum likelihood estimation. When using an MCMC for model inference, the output

consists of a sampling or distribution over the parameter space. It is advantageous to use a likelihood estimate whichmore closely reflects the

optimal parameter regime estimated from the MCMC instead of the parameter regime which maximizes the likelihood. To this end, bL in the
iScience 27, 109386, April 19, 2024 13
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BIC equation in Equation 9 is replaced with PðyjCqDÞ, the likelihood of observing the data given CqD, where CqD = mean over the parameter

estimates across all MCMC iterations.

To improve the generalizability of a model fit to the dataset, and remove the bias of outliers, we developed a variation of cross-validation

for model selection, described in Algorithm 1.
Algorithm 1. Perform model selection based on MCMC runs

1: Measure average parameter estimates, CqD, across MCMC runs for each model.

2: Remove 2% of the data chosen randomly (ysub), and estimate BIC for each model using PðysubjCqDÞ.
3: Repeat Step 2. for 10,000 subsets. Define BICx as the set of BIC estimates across all 10,000 subsets for a given fit, and CBICxD as the mean BIC estimate

across all 10,000 subsets.

4: if max(BICdouble sigmoidal) < min(BICuniform) & CBICdouble sigmoidalD< CBICgaussD & CBICdouble sigmoidalD< CBICsigmoidalD then

5: Set best fit to double sigmoidal.

6: else if max(BICsigmoidal) < min(BICuniform) & CBICsigmoidalD< CBICgaussD then

7: Set best fit to sigmoidal.

8: else if max(BICgauss) < min(BICuniform) & CBICgaussD< CBICsigmoidalD then

9: Set best fit to Gaussian.

10: else.

11: Set best fit to uniform.

12: end if.
Note, instead of cross-validating amodel estimated from a training set on a test set, the full dataset is used for model inference and tested

on random subsets of the dataset. Figure S12 highlights a random sampling of the parameters over theMCMC runs using a double sigmoidal,

Gaussian, sigmoidal and uniform model, as well the BIC estimates on random 98% subsets of the data.

It is worth noting that the double sigmoidal function can also closely take the form of the Gaussian and sigmoidal functions. It would be

possible to use the double sigmoidal function alone, instead of including the Gaussian and sigmoidal functions, to model the dynamics of

gene expression. However, the double sigmoidal function will force the presence of two inflection points, whereas with the sigmoidal function

will only have one inflection point, which in many casesmore accurately models the gene expression dynamics of single a state-switch. Finally,

a simpler model is often more favorable to use than amore complex model to prevent overfitting, and in the cases where a Gaussian function

provides an equally good fit as the double sigmoidal function, then the selection of the simpler Gaussian model is preferred.
MCMC diagnostics

In order to ensure that the MCMC adequately approximates the posterior distribution over the parameter space, a variety of heuristics exist.

TheMCMC trace plot (Figure S10) provides a visual inspection of whether theMCMCappears to have reached a steady-state. Also, the accep-

tance fraction across MCMC chains (Figure S11) is used to filter potentially stuck MCMC walkers. In general, there is no way to prove conver-

gence of an MCMC sampler,56 and therefore diagnostics are used to measure how well an MCMC run has converged to an equilibrium or

steady-state. A few diagnostics are highlighted in this section to show the ability of the ensemble sampler described above to adequately

converge to the posterior distribution over the parameter space.

One diagnostic metric relies on the estimate of the integrated autocorrelation time, which estimates the number of iterations needed for

the MCMC to draw an independent sample. In the case of samples generated by an MCMC, the samples are not independent. This is due to

the nature of theMarkov process used to sample from the posterior distribution, which is dependent on the previous sampling of parameters,

by definition. The integrated autocorrelation time is defined as,

tf =
XN

t = �N

rf ðtÞ = 1+ 2
XN
t = 1

rf ; (Equation 10)

where rf ðtÞ is the autocorrelation function at time delay t. Then, the effective sample size (ESS), i.e. the number of i.i.d. draws from the pos-

terior distribution, for an ensemble sampler can be calculated as,

ESS =
MN

tf
; (Equation 11)

whereM = number of walkers, and N = number of MCMC iterations used after discarding the burn-in. In order to estimate tf , the marginal

autocorrelation function for each parameter in the model can be estimated separately out to a certain time delay, T, using the average es-

timate across all walkers, and taking the maximum estimate of tf over all T, defined as

bt f = max
T

 
1 + 2

XT
t = 1

< rf ðtÞ >
!
: (Equation 12)
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Here, T ˛ ½0; 1000� enables an accurate estimate of bt f under the assumption that rf ðtÞ approaches 0 by t = T for each parameter. The

autocorrelation function (Figure S13) and autocorrelation time (Figure S14) is estimated for each parameter separately.

For a general comparison, the autocorrelation times were estimated for all genes using the model with the best fit in the mouse e13.5

forebrain sample (Figure S15). The autocorrelation times increase with the complexity of the model (i.e. number of parameters specified

in each model). This is in part expected, since a model with more parameters will generally have a lower acceptance rate due to the higher

number of dimensions in which theMCMChas tomake proposal moves, leading to higher autocorrelations for each parameter. Nonetheless,

the autocorrelation times are fairly robust for each model.

Thinning is an approach to use every k-th iteration of the MCMC walkers, where k = tf would represent an i.i.d. sampling of the posterior

distribution. However, various publications indicate that thinning is often unnecessary and results in reducedprecision.57,58 Therefore, no thin-

ning of the MCMC walkers was used in this analysis.

Another way to visualize the posterior distribution over the parameter space derived from an MCMC is a corner plot (Figure S16). The

corner plot highlights both the two dimensional projections over the parameter space across iterations of the MCMC, as well as the marginal

posterior distribution for each individual parameter (highlighted in the upper plots). Some parameters are more correlated with each other

than others, indicating underlying covariates within themodel parameters. However, themarginal posterior distributions do not appear to be

multimodal.

These heuristics provide some insight into the ability of the ensemble MCMC sampler to provide an accurate sampling of the posterior

distribution over the parameter space.
Estimating inflection points

Inflection points occur where the curvature of a function changes sign. At inflection points, the first-order derivative, or rate of change, of a

function reaches a local maximum or local minimum. At an inflection point, the second-derivative of a function passes through 0 with the sec-

ond derivative changing sign from positive (concave upward) to negative (concave downward) or vice versa. The inflection points of the

Gaussian, sigmoidal and double sigmoidal fits can be used to compare the relative timing of when genes exhibit a state transition along

a pseudotime trajectory. To estimate the inflection points of the different functions, first solve for x at which the second-derivative of the func-

tion is zero. For the Gaussian function, fgaussðtÞ, sigmoidal function fsigðtÞ, and double simgoidal function fdsigðtÞ defined in Equation 1, the

second derivatives are

f 00gaussðtÞ =
a

s4
e�ðt� t0Þ2

2s2 ðt � ðt0 � sÞÞðt � ðt0 + sÞÞ;
f 00sigðtÞ = k2L
e� kðt� t0Þ

�
e� kðt� t0Þ � 1

	
ð1+e� kðt� t0ÞÞ3

;

f 00dsigðtÞ = k21ðbmid � bminÞ
e� k1ðt� t1Þ

�
e� k1ðt� t1Þ � 1

	
ð1+e� k1ðt� t1ÞÞ3

+ k22ðbmax � bmidÞ
e� k2ðt� t2Þ

�
e� k2ðt� t2Þ � 1

	
ð1+e� k2ðt� t2ÞÞ3

:

For the Gaussian function, fgaussðtÞ, two inflection points occur at t˛ ðt0 � s;t0 +sÞ. For the sigmoidal function, fsigðtÞ, one inflection point

occurs at t = t0. The estimates for the inflection points are then measured from the parameters ðt0 � s; t0 +sÞ for the case of the Gaussian

and t0 for the case of sigmoidal function at each MCMC iteration. Finally, for the double sigmoidal function, fdsigðtÞ, the number of inflection

points can vary. However, if all parameters are fixed besides k1, then, f
00
dsigðtÞ/0 as k1 increases. Similarly, if all parameters are fixed besides t1,

then f 00dsigðtÞ/0 as t1 decreases. That is, for k1 [ 0, i.e. the transition from bmin to bmid occurs rapidly, then an inflection point will occur very

close to t1. Similarly, for k2 [ 0, i.e. the transition from bmid to bmax occurs rapidly, then an inflection point will occur very close to t2. Also, the

further apart t1 and t2 are from each other, the closer the inflection points are to t1 and t2. To ensure the inflection points occur very close to t1
and t2, at each iteration of the MCMC, a move is only accepted in cases where signðf 00dsigðt1 � dtÞÞ � signðf 00dsigðt1 +dtÞÞ< 0 and

signðf 00dsigðt2 � dtÞÞ � signðf 00dsigðt2 +dtÞÞ< 0 for dt = 1. The estimates for the inflection points are then calculated from the parameters t1

and t2 at each MCMC iteration.
Comparing inflection points

Regulatory interactions were inferred based on the relative timing of inflection point estimates (Figure 2). If there was an overlap of at least

1% in the inflection point estimates between two genes across MCMC iterations, then these were assumed to have a simultaneous switch

state. A regulatory interaction between the two was mutually positive if the inflection points had the same sign, and mutually negative if the

inflection points differed in sign. The overlap between two inflection points is estimated by binning the inflection point estimates across all

MCMC iterations to 100 equally spaced bins, starting at the minimum inflection point estimate across both genes and ending at the

maximum inflection point estimate across both genes. Let fxigi˛ ½1;100� represent this binning domain. If pAðxiÞ is the percent of counts

in the histogram in bin xi for gene A, and pBðxiÞ is the percent of counts in the histogram in bin xi for gene B, then the overlap between

the two, PðA = BÞ, is
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PðA = BÞ =
X100
i = 1

min
�
pAðxiÞ;pBðxiÞ

	
: (Equation 13)

If the inflection point estimates were non-overlapping (i.e. inflection point overlap was less than 1%), then the following relationships were

constructed. If the first gene (i.e. earlier inflection point) had a positive inflection point and the second gene (i.e. later inflection point) also had

a positive inflection point, then the first gene positively regulates the second gene. If the first gene had a positive inflection point and the

second gene had a negative inflection point, then the first gene negatively regulates the second gene, and the second gene positively reg-

ulates the first. If the first gene had a negative inflection point and the second gene had a negative inflection point, then the first gene posi-

tively regulates the second gene. If the first gene had a negative inflection point and the second gene had a positive inflection point, then no

relationship is given.
Running Monocle 3, tradeSeq and Slingshot on mouse e13.5 forebrain dorsal cells

We tested whether genes were differentially expressed along the e13.5 forebrain dorsal NSC/ IP/ neuron trajectory usingMonocle 3 and

tradeSeq. tradeSeq works by fitting a negative binomial generalized additive model (GAM) to the pseudotime-ordered counts for each gene

separately.We used the associationTest() from tradeSeq, which tests the null hypothesis that all smoother coefficients in theGAMare equal to

each other. We passed in the raw counts and pseudotime ordering from diffusion pseudotime as input, specifying the number of knots used

for the GAM fitting to 3. To test whether genes were differentially expressed along the trajectory using Monocle 3, we used the graph_test()

function, passing in the principal_graph estimated by the learn_graph() function, which estimates a pseudotime trajectory by fitting a principal

graph through the cells. Finally, to compare the affect of input pseudotime method, we also estimated a pseudotime ordering of e13.5 fore-

brain dorsal NSC / IP / neurons using Slingshot, which fits a principal curve through the data. As input, we passed in the 2-dimensional

umap embedding of these cells and log-normalized expression data, using the getLineages() function to estimate the pseudotime ordering.
16 iScience 27, 109386, April 19, 2024
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